Tuesday, November 26, 2019

An ‘electric,’ inspiring Thanksgiving for the Huntington’s disease community

Thanksgiving is my favorite holiday. I’ve reflected on it many times in this blog. For me, rather than the commercialism and stress associated with the holidays, it’s truly a day of relaxation, the warmth of friends and family, and gratitude.

This year, the Huntington’s disease community has bountiful reasons for thanks. Several clinical trials to test what might become the first effective treatments are in progress, and the community has demonstrated spirited participation.

The historic Roche gene-silencing program successfully started its crucial third and final phase, GENERATION HD1, earlier this year. The program includes an open-label extension of all 46 participants in the first phase, completed in December 2017, all of them receiving the drug RG6042 via a monthly injection into the cerebrospinal fluid (CSF).

“Two years ago, we showed for the first time – about 25 years after the discovery of the gene –the ability to lower CSF levels of mutant huntingtin [protein] in patients with HD, which was a very exciting first-in-human accomplishment, and that was really the springboard that allowed us to proceed to our global development program,” Scott Schobel, M.D., M.S., Roche’s associate group medical director and clinical science leader for RG6042, reported at the 26th annual Huntington Study Group (HSG) meeting on November 8. “So these heroic 46 volunteers were the foundation of that.”

GENERATION HD1 is “recruiting incredibly well,” Dr. Schobel said. “It’s been absolutely electric.” Total worldwide enrollment in GENERATION HD1 and related studies has surpassed 800. “It’s been a huge response from the community,” he added.

Several other programs provided updates at the HSG meeting.

Although much work remains to develop effective therapies, HD families and their supporters can feel proud for helping further the progress achieved in 2019.

Priscilla’s inspiring fight and peaceful paintings

An HD-stricken woman I know from Brazil, Priscilla Ferraz Fontes Santos, embodies the life-force of the HD cause. I saw Priscilla in 2013 at the sixth World Congress on Huntington’s Disease in Rio de Janeiro, and got to know her at #HDdennomore, Pope Francis’ special audience with the HD community in Rome in 2017.

Brazilians don’t celebrate Thanksgiving, but Priscilla’s words, paintings, and photos help us feel the peace and hope of our quintessentially American holiday.

Priscilla was stricken with juvenile HD as a teenager. She had played soccer, pursued acting, and completed her journalism degree, but the disease prevented her from finishing a second degree in tourism.

Many juvenile patients do not live past 30. Priscilla is 36. She takes no drugs to control her involuntary movements and other symptoms but instead relies on alternative and spiritual approaches, including yoga. However, she also follows HD clinical trials and hopes for a cure.

Starting November 22 and ending December 10, Priscilla and her art teacher are staging an exhibit of Priscilla’s paintings in Serra Grande, a town in the state of Bahia. They have called it “Colored Atmosphere.”

Priscilla with two of her paintings (family photo)

“The past two and a half years, I have been taking painting and art classes, and I have discovered for myself the pleasure and well-being that painting brings,” Priscilla wrote in an introduction to the exhibit. “As I await the cure, I have gained the courage to overcome many difficulties and meet challenges with the ever-present support of my family, friends, and health professionals who care for me.”

Priscilla ended with this wish: “I hope that you enjoy my paintings and that they awaken in you all of the strength, beauty, and joy with which I painted them.” (I translated the text from the original Portuguese.)

Priscilla is an “inspiration of strength and positive thinking” for all of us, Priscilla’s mother LĂ­gia wrote in a message in Brazilian WhatsApp group dedicated to the HD cause.

Priscilla practicing yoga (family photo)

Symptom-free, but awaiting treatments

As always, I am profoundly grateful for not having yet developed any of the inevitable classic symptoms of HD, which struck my mother in her late 40s and ended her life at 68.

I turn 60 next month – an age at which my mother had full-blown HD and could no longer care for herself.

Last week, I presented my new book on Brazilian history to an audience at the University of San Diego. I had never imagined I would still be able to write at age 60.

Even more importantly, I’m able to continue supporting and loving my wife Regina and daughter Bianca. A sophomore at the University of Pennsylvania and HD-free, Bianca will spend Thanksgiving with friends in Connecticut. However, in a few weeks she will be home for winter break.

I am crossing my fingers that GENERATION HD1 and other trials can produce an effective treatment  and that I can hold on long enough to benefit and share more precious time with my family.

Sunday, November 17, 2019

‘Navigating’ the Huntington’s disease community towards crucial clinical trials

As scientists and drug companies expand the array of potential treatments for Huntington’s disease, the Huntington Study Group (HSG), the world’s largest HD clinical research network, is redoubling its efforts to educate the HD community for current and upcoming clinical trials and train the necessary medical personnel.

A record 700-plus participants focused on these themes at the 26th annual HSG Meeting, titled “HSG 2019: Navigating HD,” November 7-9 at the Hyatt Regency hotel in Sacramento, CA. (Attendance at the HSG 2017 and 2018 meetings was over 600.)

Clinical trials are crucial for demonstrating drug safety and efficacy. The number of HD trials has increased in recent years, bringing hope for better treatment of the devastating symptoms and perhaps even an attack on the root causes. Key trials in progress include GENERATION HD1, run by Roche, and SIGNALadministered by the HSG and Vaccinex.

“Figuring out how these trials are going to work, what they’re aiming to do, and what an individual patient or family should do to get involved or not get involved has become complicated, to some extent,” Andrew Feigin, M.D., the HSG chair and a professor of neurology at New York University Langone Health, told me in a November 6 interview. “That’s my interpretation of the ‘navigating HD.’ We’re trying to get at some of these novel therapies and clarify where they’re headed, where they stand, how the HSG can get more involved, and figuring out where people can go for the cutting-edge therapies for Huntington’s disease.”

In the conference-opening “HSG State of the Union” presentation by HSG leaders and staff, executive director Shari Kinel, J.D., reported that the event involved 15 countries, 23 companies, 9 advocacy groups, 17 sponsors, and 15 exhibitors. The sponsors included Roche’s American subsidiary Genentech and Vaccinex.

“This incredible showing […] is a sign that the HSG has more partners, more colleagues, more friends than ever who are engaged, dedicated, and committed to seeking treatments that make a difference for those impacted by Huntington’s disease,” Kinel told the audience.

Dr. Feigin affirmed that in the past year, the HSG has doubled its paid staff from four to eight, plus one part-timer, although he declined to reveal the organization’s annual budget. Headquartered in Rochester, NY, the HSG is mainly funded by firms like Vaccinex that it partners with on clinical trials, he explained. Sponsors cover the cost of the annual meeting.

The audience watches a presentation by Dr. Arthur Combs at the "HD Innovators Forum" at the 26th annual HSG Meeting (photo by Gene Veritas, aka Kenneth P. Serbin)

A full-service organization

The HSG was founded in 1993, the year of the discovery of the huntingtin gene. Dr. Feigin described the nonprofit organization as a “full-service” contract research organization that can carry out all aspects of an HD clinical trial.

In her speech, Kinel stated that the HSG member network includes 801 investigators (researchers), trial coordinators, scientists, and HD experts. Around the globe, the organization has credentialed 127 sites for HD trials, and HSG members have worked with more than 21,000 HD-affected individuals, she said.

The HSG also developed the Unified Huntington’s Disease Rating Scale (UHDRS), the primary assessment tool in HD clinical trials. It consists of tests of a person’s movements, cognition, behavior, independence, and functional capacity.

The “HSG State of the Union” presentation outlined the HSG’s mission, accomplishments, clinical trials, educational activities, efforts to improve patient care, and plans for the future.

You can watch the presentation in the video below. Click here for my video album of the event, which included a variety of presentations on patient care, clinical trial techniques and measurements, new scientific findings, and innovations in drug and clinical trial development.

Seeking a better drug to treat chorea

Prior to the main conference, the HSG held organizational meetings for KINECT-HD, a Phase 3 clinical trial by the HSG and San Diego-based drug developer Neurocrine Biosciences to test the efficacy of valbenazine to treat chorea, the involuntary movements typical in HD. 

The HSG ran the successful clinical trials of two other drugs for chorea, Xenazine and Austedo, the only HD-specific medicines to receive approval from the U.S. Food and Drug Administration (FDA). On November 14, it issued a press release announcing the start of the 18-week trial, which seeks to enroll HD-affected individuals with chorea at 55 sites in the U.S. and Canada.

In 2017, valbenazine was approved by the FDA with the name Ingrezza for the treatment of tardive dyskinesia, an irreversible involuntary movement disorder. This status allowed Neurocrine and the HSG to take it directly into a Phase 3 trial for HD.

Like Xenazine and Austedo, valbenazine is a VMAT2 inhibitor. Xenazine requires three daily doses, and Austedo two

“The upside thing of valbenazine is that it’s a drug that can be dosed once daily,” said Dietrich Haubenberger, M.D., the Neurocrine medical director, in a presentation forming part of the “HD Research Round-Up” at the close of the scientific sessions on November 8.

Wearable sensors and the search for biomarkers

In the quest for HD treatments, researchers hunt for new biomarkers, that is, signs of the disease and the effect of remedies. Biomarkers are especially critical in brain-related diseases, because doctors cannot do biopsies on the organ.

With a key innovation, KINECT-HD will also look for biomarkers. It will be the HSG’s first trial in which participants use wearable sensors – for continuous monitoring of their movements and other biological functions, even at home. Researchers hope this more detailed monitoring will provide both a better understanding of chorea and valbenazine’s impact on it.

Called BioStamp nPoint, the sensors were designed by MC10, Inc., and cleared for use by the FDA. MC10 is based in Lexington, MA.

MC10 chief medical officer Arthur Combs, M.D., described the system at the conference’s “HD Innovators Forum.”

“It weighs less than eight grams [0.28 oz.],” Dr. Combs said, explaining that the sensor can be placed anywhere on the body and worn even during showers and swimming. “It’s like putting on a Band-Aid.”

MC10 developed 44 algorithms for the system to help measure trial participants’ data. In addition to chorea, BioStamp nPoint will help investigators observe individuals’ gait, heart rate, sleep, posture, and other bodily functions, Dr. Combs added.

In one previous study, “patients with symptomatic Huntington’s disease spent 50 percent of their day” lying down, he explained. That may be a response to exhaustion or the risk of falling, he said. Thus, the BioStamp nPoint system could help determine whether lying down is a “marker” for the disease, and whether less time at rest is a sign of drug efficacy, he said. It also accounts for the uniqueness of each patients, he added.

To obtain continuous data in GENERATION HD1, Roche developed an HD Digital Monitoring Platform, with participants wearing a smartwatch and using a smartphone.

You can watch Dr. Combs’ presentation in the video below.

The latest clinical trial news

In addition to Neurocrine, other firms reported on their clinical trials during the “HD Research Round-Up”: Voyager Therapeutics, uniQure, Wave Life Sciences, Vaccinex, and Roche.

The Roche GENERATION HD1 update of the company’s historic Phase 3 clinical trial of the drug RG6042 was one of the most anticipated. A gene-silencing drug, RG6042 is aimed at the roots of HD and caused a stunning improvement in the health of HD-affected mice. On October 14, Roche announced that it was expanding the number of trial participants from 660 to 801 and adding China to the nearly 20 countries in the study.

The announcement noted that recruitment in the U.S. had “exceeded expectations” and was now complete. Expanding the number of volunteers and adding China will allow for more abundant data and the study of a more diverse population, Roche said.

Enrollment for the Roche HD program has been “absolutely electric,” with over 800 individuals already in 2019 in GENERATION HD1 and related HD studies, said Scott Schobel, M.D., M.S., Roche’s associate group medical director and clinical science leader for RG6042 (click here to watch Dr. Schobel’s presentation). If the trial is successful, Roche will apply for drug approval from the FDA and regulatory agencies in other countries.

On November 9, HSG held a “Family Day” for the HD community, with presentations by advocates like me, presentations by scientists, and an update on GENERATION HD1.

In upcoming articles, I will report on Family Day and more of the scientific and clinical developments discussed at the meeting.

Disclosure: my travel expenses were covered by the HSG and the Department of History of the University of San Diego.

Friday, October 18, 2019

Are we failing to stop Huntington’s disease by ignoring ‘natural’ remedies, alternative therapies, and repurposed drugs?

This article is Part 2 of a two-part series.

Because Huntington’s disease is so devastating and intractable, many affected individuals and presymptomatic gene carriers like me have chosen to take substances outside the pharmaceutical mainstream to try to forestall the inevitable onset or worsening of symptoms.

The reason: 26 years after the discovery of the huntingtin gene, despite significant progress in understanding the disease, there is no effective therapy or cure. 

In Part 1 of this series, Robert Pacifici, Ph.D., the chief scientific officer for CHDI Foundation, Inc., discussed the immense progress made in HD research and the optimistic prospects for developing therapies. CHDI is the largest nonprofit effort aimed at defeating HD.

Only two drugs addressing symptoms of HD have been approved by the U.S. Food and Drug Administration (FDA) – Xenazine in 2008 and the similar, improved drug Austedo in 2017. Both treat the involuntary movements in HD (chorea) but do not attack the causes or halt progression of this fatal disorder. (Click here to read more.) 

Physicians also prescribe medications – nonspecific for HD – to alleviate the difficult behavioral and psychiatric symptoms. Those drugs also have no effect on progression.

Trying supplements

My mother died of HD in 2006 at age 68. As I desperately witnessed the disease’s inexorable onslaught on her mind and body, I embarked on a controversial “treatment now” program of unproven but certainly not quackish supplements, the Huntington’s Disease Drug Works (HDDW) regimen developed by veteran HD physician LaVonne Goodman, M.D. 

Starting in 2005, I introduced the supplements into my diet in steps. I worked up to a daily routine in which I took 75 grams of trehalose, a sugar that seems to help the brain clear cellular debris; 600 mg of medical-grade coenzyme Q-10 (which I had taken on and off since 1996); two g of omega-3 oil; two g of blueberry extract; and ten g of medical-grade creatine. (Click here to read more.)

For several years I participated as a subject in an HDDW online observational study, performing cognitive tests on a home computer. In this very small study, several early or midstage HD-affected people showed stabilization or improvement. Late-stage patients did less well, continuing to progress with the disease. The study was too small for its results to be applicable to the general HD population. (Click here to read more.)

I was the only presymptomatic gene carrier in the trial. Afterwards, I continued the regimen on my own, but regularly consulted with Dr. Goodman.

In 2014, I stopped coenzyme Q-10 and creatine after clinical trials proved them ineffective. Recently, in place of expensive high-grade omega-3 pills, I’m eating more fish. Annually, I’ve spent thousands of dollars on supplements – none covered by health insurance.

I have also sought to lead a healthy lifestyle, including intellectual and social enrichment. Doctors and researchers encourage this and have pointed out that it could be part of why I have long passed my mother’s age of onset, although there is no scientific proof  (Click here to read more).

The HDDW program and the clinical trials for coenzyme Q-10 and creatine were the most formal testing of supplements. HD-affected individuals have tried and/or discussed a range of other substances, including injections of live fetal shark cells, the amino acid cysteine, medical marijuana, and the highly popular – but potentially harmful – marijuana and hemp extract cannabidiol (CBD), usually by drinking an oil.

Above, CBD products in a Los Angeles, CA, grocery store (photo by Deceptitom [CC BY-SA 4.0 {https://creativecommons..org/licenses/by-sa/4.0}]). Below, the supplements I have taken (photo by Gene Veritas, aka Kenneth P. Serbin)

One group of advocates has also pushed for a clinical trial of methylene blue, a dye under study as a possible way to alleviate a variety of medical conditions.

In our recent interview, Dr. Pacifici and I delved into whether CHDI and the HD community are failing to defeat the disease by ignoring these types of alternative approaches, including so-called “natural” remedies and repurposed drugs. The video of our interview is posted at the end of this article.

HD-specific drugs needed

Citing the increased interest in HD in the pharmaceutical industry (discussed in Part 1), Dr. Pacifici said that CHDI would assist any company aiming to test an HD drug, as long as it’s safe, tolerable, and backed with enough resources to do a careful clinical trial.

“It’s wonderful that there’s this diversity of folks that have assets and try and come into the field, as long as they’re credible and well-thought-out,” he said.

However, because of HD’s genetic cause and complexity, CHDI has stressed that drugs for halting disease progression must be “new chemical entities” and HD-specific.

Dr. Pacifici pointed to an example: difficulties with sleep, a serious symptom of HD. The HD field must consider: “What are the things that are probably going to happen out there anyway, because there’s a big market for sleep medications versus the things that are very specific to HD, that if we don’t do them, they’re not going to get done?”

Don’t expect to win the jackpot

The need for unique HD drugs, and the overall history of drug discovery, point to the fact that so-called “natural” approaches and repurposing of other drugs will not result in effective treatments, Dr. Pacifici asserted.

The alleviation of Dr. Pacifici’s own suffering from familial Mediterranean fever (FMF, discussed in Part 1) resulted from the discovery of the drug colchicine, “a natural thing from the crocus flower” already in use to treat gout. Such a scenario is atypical, he explained.

“Obviously, I didn’t just win the Lotto,” Dr. Pacifici said. “I won the Mega Millions with the fact that I happen to be treated by an existing drug. It’s pretty rare.”

The HD community should not expect such an outcome, he said.

“Obviously the thing that’s wonderful when that does happen is that there’s no path that’s shorter from a discovery to a treatment,” he continued. “But the effect has to be pretty overwhelming.”

Indeed, colchicine “completely stopped” the recurrent abdominal pain and fever of FMF. 

“You can imagine,” he said, “that observation’s a little harder to make in Huntington’s disease, given the slow progression of the disease, given the myriad of symptoms.”

Robert Pacifici, Ph.D. (photo by Gene Veritas)

Is ‘natural’ better?

The notion of “natural” products is a bit “artificial,” Dr. Pacifici pointed out.

“People, first of all, seem to think that something that’s ‘natural’ is better,” he said. “There are plenty of horrible poisons like ricin that are natural, and if you take them, they kill you. It’s ‘organic,’ and it’s ‘natural.’ That doesn’t mean it’s good for you!”

We discussed a clinical trial for an eye disease using liquid from the resin of the mastic tree from the Greek island of Chios, as reported by New York Times columnist Frank Bruni. For thousands of years, people have used the resin to address many types of health problems. The trial seeks to test whether the liquid can repair damaged nerves in the eye, with potentially positive implications for people with Alzheimer’s disease and other neurological conditions.

Dr. Pacifici said that, in such a study, scientists need to know the exact chemical makeup of the substance and, in the case of a possible HD treatment, determine whether that makeup is any different from other compounds CHDI has tested.

In the case of the mastic tree, scientists also need to ensure that weather conditions and the conditions of the tree do not alter the makeup of the resin. Also, the testing of the substance needs to be “reproducible,” he explained. 

That the compound in the liquid comes from a natural source is irrelevant, he added, because scientists can produce such compounds in a lab.

Clinical trials are expensive, costing hundreds of millions of dollars, Dr. Pacific observed. Ultimately, CHDI and HD researchers need to avoid “taking empty shots on goal that we could have predicted up front had no chance of working.”

Millions of experiments

Not long after its founding in 2003, CHDI did a project to ensure that the HD field did not miss a possible remedy among existing drugs and other substances, some of them natural. According to Dr. Pacifici, the foundation worked with a small firm that had a library of all FDA-approved drugs and also substances such as vitamins and other generally safe items, including some shown to be safe and tolerable in Phase 1 clinical trials.

“We tested all of those,” Dr. Pacifici recalled, referring to the entire library. “In fact, we tested all of those at multiple concentrations. In fact, we tested all of those at multiple concentrations with each other, in pairwise fashion [two drugs at a time].”

Carried out in cells, the tests ran into the millions, he said.

“But we found nothing that suggested, ‘Yeah, there’s the Mega Millions hit or combination of things that should go forward,'” he said.

The massive experiment confirmed the need for a unique, HD-specific type of medicine that could be delivered to the brain safely over a long period of time, thus attacking the specific problems caused by the disease, Dr. Pacifici observed.

Through Enroll-HD, the CHDI-sponsored global study of HD-affected individuals and their families, CHDI tracks unusual data from visits to HD clinics that might suggest follow-up to discover further clues for developing drugs.

The CBD ‘craze’

As a September 29 CNN documentary reported, in the United States production and use of CBD for health reasons has boomed in the last six years. The unregulated proliferation of CBD-containing products such as tinctures, foods, and oils has left the public with little reliable information on the risks, including items with harmful impurities.

“The CBD craze that we’re in, I think, is unprecedented really in the history of medicine,” Donald Abrams, M.D., a leading cannabis researcher, said in the broadcast. “It’s a compound that has gotten way ahead of any research to support the claims that are being made.”

Dr. Pacifici, who’s studied the issue closely, echoed these concerns. Tetrahydrocannabinol (THC), CBD, and other marijuana-based compounds are “enjoying their moment in the sun” because of legalization for recreational and medical use in some states, although not federally, he observed. “It’s kind of the flavor of the month, if you will.”

Only one approved CBD drug

CBD is a “real compound,” he explained.

However, there is only one FDA-approved drug made from CBD, Epidiolex, manufactured by the British firm GW Pharmaceuticals. Epidiolex was shown to be safe and efficacious in the treatment of two types of childhood epilepsy.

GW Pharmaceuticals had to run “through the same paces as any other drug substance,” Dr. Pacifici remarked. “They happened to get it out of the marijuana plant. That’s fine. I don’t care where it comes from. But it’s highly purified and highly quantified so that they know exactly what’s in there and what’s not in there and the purity of it.”

No other CBD product has been tested in a clinical trial.

In Dr. Pacifici’s view, because of the lack of quality control and regulatory approval in the making of CBD products, a critical question remains: “Are people who are experimenting with it actually getting real, pure CBD?” In some cases, the products do not even contain CBD, or have an incorrect concentration.

CBD not yet tested for HD

Could CBD potentially treat Huntington’s disease?

 “The short answer is, we don’t know,” he asserted. “I can’t tell you of the number of fantastic ideas that I’ve had. Wonderful ideas, that I sit down, I think, ‘I’ve had this eureka moment.’ Until you test it, and you find out that biology is more complicated than you thought.”

Scientists, he said, know about CBD’s “pharmacology” – its function, effects, and where it gets into the body. “Is it something that could potentially have a beneficial effect? Sure. But has it been properly tested, especially in HD? Absolutely not.”

Many researchers are currently focusing on CBD for HD, and they have developed some very reasonable hypotheses, he said.

“To my mind, none of them, yet, have reached a level of evidence where somebody wants to go spend a hundred million dollars or more on a trial to see if it’s actually efficacious,” he said. “Maybe they will.”

Insufficient evidence on methylene blue

Regarding methylene blue, Dr. Pacifici observed that research is currently insufficient, “so I don’t think any of us can say definitively that it will work or it won’t work.”

“Isolated examples” show that it might be efficacious, but that’s not enough “evidence to actually run a full-blown human clinical trial,” he explained.

Produced by HD community members in 2016, The Blue Solution video suggests that families can consult their doctors about methylene blue.

However, Dr. Pacifici cautioned against this approach.

“A lot of times people have said things like, ‘Well, as long as it doesn’t do anything bad, why not take it,’” he remarked. “I think that’s a little bit dangerous. First of all, you never really know whether or not something is safe and well-tolerated until it’s tested.

“There are examples of opportunity costs. There are people who were on Co-Q 10 who were not allowed to participate in other, real trials because they were loaded up with Co-Q 10. So, the idea that ‘it’s probably safe, and I’ll take it in case it is good,’ I wouldn’t certainly advise somebody to go just based on that limited amount of evidence.”

Diet and lifestyle

I asked Dr. Pacifici why so little research has focused on HD and diet and whether it should.

“It doesn’t surprise me that people are curious about this,” he said, citing the example of Lorenzo’s Oil, a nutrition-based treatment developed for adrenoleukodystrophy, a deadly genetic brain disorder rarer than HD.

“In fact, we’re very careful,” he said of CHDI’s mission. “One of the reasons we say that we’re trying to accelerate ‘therapies’ for HD – we don’t say accelerate ‘drugs’ – is because we don’t know what shape that therapy could take. We want to be deliberately inclusive. In fact, I wouldn’t even limit it to diet. I would say ‘lifestyle.’”

He recalled the research of Jenny Morton, Ph.D., who works with transgenic HD mice and sheep. Dr. Morton observed in an experiment that HD mice had erratic sleep schedules – as do HD-affected people. She placed them with normal mice, giving them sleeping and wakeup pills, and gave them things only at night, a mouse’s normal time for activity.

“She was able to show that those mice now absolutely were back to their regular rhythm – they had no choice – and actually it was very beneficial for them,” Dr. Pacifici noted. “They actually even lived longer.”

Keeping our eye on the ball

With the advent of historic clinical trials such as the Roche Phase 3 gene-silencing program, “we’re at a stage now where there are some unbelievably compelling drug candidates,” Dr. Pacifici remarked.

“I guess the question we have to ask ourselves is: how much do we want to take our eye off the ball?” he asked. “Imagine how tragic it would be if there was something that collectively we, with CHDI’s involvement, could do to make those things successful and we were distracted with something else that had much lower probability of success.”

The HD community needs to “discipline” itself to focus on the “very best” possibilities for treatments and avoid “diluting our efforts the way we did in the old days” and “detracting resources.”

For a disease as complex and devasting as Huntington’s, there are no easy answers. The HD community – affected families, scientists, advocacy organizations, foundations, and our supporters – must continue the hard but brave march towards therapies.

CHDI: many 'irons in the fire' in quest for Huntington's disease therapies from Gene Veritas on Vimeo.

Tuesday, October 08, 2019

As range of possible therapies grows, CHDI expands efforts to defeat Huntington’s disease

This article is Part 1 of a two-part series.

CHDI Foundation, Inc., the largest nonprofit effort aimed at developing therapies for Huntington’s disease, has expanded its efforts and partnerships to accelerate the defeat of the deadly disorder.

That’s the message transmitted in a July 29 interview by Robert Pacifici, Ph.D., CHDI’s chief scientific officer, who has a very personal commitment to disease eradication, and in a July 13 public presentation by Douglas Macdonald, Ph.D., CHDI’s director for research operations and scientific alliances.

CHDI emerged in 2003 out of the Hereditary Disease Foundation, where it was known as “The Cure Huntington’s Disease Initiative.” Funded by donors who wish to remain anonymous, “CHDI” is no longer an acronym but simply part of the foundation’s name.

According to Dr. Pacifici, and as reported previously in this blog, CHDI continues to spend $100 million annually on HD research and programs. The number of staffers at its offices in Los Angeles, CA, New York, NY, and Princeton, NJ, has grown to 100, doubling in ten years.

A virtual biotech firm, CHDI has no labs. Instead, it partners with, funds, and outsources projects to contract research organizations (CROs), academic labs, and pharmaceutical and drug discovery companies like Ionis Pharmaceuticals, Inc., the developer of RG-6042, a gene-silencing drug now in a historic Phase 3 clinical trial run by Roche. Roche took over the license after an Ionis Phase 1/2a trial successfully and safely lowered the amount of huntingtin protein, normal and mutant, in trial volunteers’ cerebrospinal fluid (CSF). Roche is now evaluating whether this reduction of huntingtin protein leads to clinical benefit (efficacy) in the Phase 3 trial.

“On any given day, there are about 700 other people who are supported by CHDI that are working on various aspects of the drug discovery and development pipeline that we try and orchestrate and integrate and enable,” Dr. Pacifici told me at the Los Angeles office, which is strategically located three miles from the city’s international airport.

CHDI seeks to “push the field forward” towards effective treatments and other “therapies,” which could include approaches other than drugs, he explained.

However, unlike private for-profit firms, CHDI does not seek to grow or perpetuate itself: “We actually don’t want to build a big company. We’d like to dissolve CHDI, because our job is done.” 

CHDI is motivated by “time, not money,” because it wants to “accelerate” the discovery of therapeutics, Dr. Macdonald said in his talk at the Fourth Annual Convention of the San Diego Chapter of the Huntington’s Disease Society of America (HDSA-San Diego).

“We don’t have any competitors,” he added. “We only have collaborators.”

Robert Pacifici, Ph.D. (photo by Gene Veritas, aka Kenneth P. Serbin)

An in-depth look

You can watch my interview with Dr. Pacifici, my recording of Dr. Macdonald’s presentation, and the 2019 CHDI research highlights report, Postcard from Palm Springs, in the videos at the end of this article.

I first met Dr. Pacifici in December 2007, when he spoke at a “Spotlight on Huntington’s Disease” that I organized at the University of California, Los Angeles, for the oversight board of the California Institute for Regenerative Medicine, the state’s $3 billion voter-approved stem cell initiative.

In 2009, I visited a CHDI office for the first time, in Los Angeles, to interview Dr. Pacifici and other scientists to learn more about the organization. Since then, I have done seven video interviews with Dr. Pacifici – during the foundation’s annual HD Therapeutics Conference in Palm Springs, CA – to obtain snapshots of the progress towards treatments. In 2011, I keynoted the sixth conference in a major step out of the terrible and lonely HD closet. 

Our July 29 interview was our ninth overall and, at 82 minutes, our longest and most in-depth. I sought to gain perspective on CHDI and the overall efforts towards therapies. I also wanted Dr. Pacifici’s assessment of so-called natural and alternative remedies used by some in the HD community, such as CBD oil, and also of the potential role of repurposed drugs – the topic of Part 2 of this series.

I first came in touch with Dr. Macdonald because he was CHDI’s point person for collaborations with Ionis and other gene-silencing projects. His July talk in San Diego was the most comprehensive public presentation of CHDI’s activities in lay terms that I have seen. (Also see Dr. Pacifici’s June 28 overview of CHDI at the 34th Annual HDSA Convention in Boston.)

Recording these two scientists in July and exploring their ideas once again helped me cope with my status as an HD gene-carrier and, I hope, contributed mental stimulation to help delay the inevitable disease onset. (Click here to read more.)

July 2019 marked a personal milestone for me: not only tracking CHDI for a decade, but also living symptom-free.

Douglas Macdonald, Ph.D., at the 2019 HDSA-San Diego chapter convention (photo by Randy Oto)

Battling genetic diseases

In interviewing HD scientists, I often ask what led them to focus on HD, a rare disease, rather than more common afflictions. In Dr. Pacifici’s case, his own family’s struggle against familial Mediterranean fever (FMF) motivated him to become a drug hunter and ultimately focus on HD.

“Like, unfortunately, too many of you, my family also had a rare genetic disorder,” he said, referring to the HD community and FMF.

Dr. Pacifici explained that FMF caused his father to have “recurrent bouts of horrible stomach pain and elevated fever and eventually ended up passing away from complications related to the disease at the very early age of 47, when I was just four years old.”

As a result, Dr. Pacifici had firsthand knowledge of a genetic disease’s “devastating” impact on a family.

“The thing that’s really crazy is that it turns out that the disease is now treatable, and it’s treatable with a drug that’s been around a very long time,” he said. “It’s a natural thing from the crocus flower called colchicine.”

Colchine was introduced as a treatment in 1972. However, as with HD, there is no cure. 

Dr. Pacifici pointed out that, tragically, each day his father passed by a pharmacy that carried colchicine, but before a doctor in Turkey using the drug to treat gout had noticed that gout patients with FMF also got relief from that condition.

As a child, Dr. Pacifici, who grew up in New York City, took part in FMF clinical studies at the National Institutes of Health (NIH) in Bethesda, MD. At 8, with the discovery of colchicine as an FMF treatment, he started taking the drug, as did his 24-year-old brother. Dr. Pacifici’s son also inherited the disease and takes colchicine.

The HD gene is dominant, with each child of an affected parent having a 50-50 chance of inheriting the mutation, which inevitably brings on the disease. The FMF gene is recessive, which means that an individual must inherit a copy from both parents.

“As it relates to HD, I’ve experienced the tragedy of a drug that comes too late, in the case of my dad,” Dr. Pacifici said.

He added that his story is also relevant because “we scientists very often ask for HD families to participate in clinical trials.”

“There’s nothing that’s more precious to a drug hunter than an observation in the population you seek to treat,” he said, echoing a frequent theme of his interviews and talks. “I think I can speak to the challenges and difficulties of participating from the patient perspective – and certainly in the advantages and the upside of that – because I participated in clinical trials before colchicine was discovered.”

Dr. Pacifici recalled giving “what seemed like gallons of blood every time I visited [the NIH] in the hopes that somehow the material that I was providing would enable research and help further a treatment. When I ask folks to participate in clinical trials, I know what a big ask I’m making, but I also know what the upside and the advantages are.”

In Part 2 of this series, Dr. Pacifici addresses colchicine’s attributes – its “natural” source and its repurposing as a drug for FMF – as potential drug development models for HD.

First, find out what’s broken

According to Dr. Pacifici, with CHDI’s help the field of HD drug development has matured to a point where major pharmaceutical companies like Roche conduct critical clinical trials, expecting a potential business payoff.

A decade ago, attempts to develop treatments were based on a “shallow understanding” of HD, he said. 

CHDI has encouraged labs to deepen our understanding of the disease. Scientists have needed to discover what’s “broken” in HD before they can attempt to fix it, he explained.

As a result, the 1993 discovery of the gene “has finally, finally been leveraged,” Dr. Pacifici observed. Currently, just in the category of gene silencing approaches like RG-6042, at least eight different types of treatments are in clinical development. (Companies with advanced programs include Wave Life Sciences, TakedauniQure, and Voyager Therapeutics.)

“They all share the common theme that they’re trying to turn off the huntingtin gene or reduce the amount of toxic huntingtin protein that’s present in cells,” he noted.

“There’s never been a more promising time in HD drug discovery and development,” Dr. Pacifici concluded, cautioning that in drug development there are no “guarantees.”

Scientists at the 2019 HD Therapeutics Conference (photo by Gene Veritas)

De-risking clinical trials

The progress in research has made for improvement in the design of clinical trials and ultimately the chances of their success, Dr. Pacific explained.

CHDI’s job as a nonprofit “is to do what’s called de-risking, to make a project look more and more attractive,” he said. “Because when it comes to later-stage clinical development, we want and need those big companies to come in.”

A major example: with Dr. Macdonald working as coordinator, CHDI and collaborating labs, CROs, and physicians developed a key technique (assay) to measure the amount of mutant huntingtin protein in clinical trial volunteers’ CSF, which runs along the spine and bathes the brain. Ionis then used this assay in its Phase 1/2a trial. In the trial, investigators draw CSF samples from volunteers via lumbar puncture. This is sometimes called a spinal tap, and is similar to an epidural procedure that many women undergo when giving birth.

To accelerate the quest for treatments, CHDI openly shares of all its HD-related data and resources. Thus, the CSF huntingtin test is available to all companies and researchers. “This exact assay is now being used in all of these [huntingtin lowering] trials,” Dr. Macdonald said in his talk.

Dr. Macdonald added that, instead of grants, CHDI uses contracts in its partnerships, with mandatory reporting of lab results. As explained by Dr. Pacifici at the HDSA convention, this business model gives CHDI “laser-like focus” on HD, preventing partners from getting sidetracked with discoveries potentially helpful in other diseases.

In addition, CHDI sponsors Enroll-HD, a global database, clinical research platform and observational study of HD-affected individuals and their relatives, now numbering more than 20,000. Enroll-HD seeks to improve clinical trials, facilitate access to them, and improve clinical care.

CHDI has established centralized biomaterial/reagent repositories of mice, cells, DNA, antibodies, and patient samples (such as blood) that researchers can access.

CHDI has also worked with the nonprofit Critical Path Institute to form the Huntington’s Disease Regulatory Science Consortium (HD-RSC) to create new tools and methods to advance efficient clinical development and address the regulatory needs for approval of HD therapeutics. Participants include Roche and other pharmaceutical and biotech firms, technology companies, academic institutions, nonprofit biomedical research institutions, and advocacy organizations.

According to Dr. Pacifici, these entities are “collaborating with each other to interface with the EMA (the European Medicines Agency) and the Food and Drug Administration (FDA) to figure out how we can design better, faster, more sensitive trials, even trials that involve people who are much earlier in the disease and not symptomatic. We’d like to have people treated as early as possible, before a lot of the damage occurs in the brain, and when the drug has the best possibility to exert its effects.”

In these types of collaborations, CHDI leverages its connections, nonprofit status, and independence to help position clinical trial programs for success, he added.

Roche’s ‘breathtaking’ investment

As a result of such de-risking, “there’s been a ton of interest” in HD among drug companies, Dr. Pacifici observed. The industry has also taken careful note of the Roche project.

“These are numbers of people and numbers of dollars and numbers of sites and a sophistication that are breathtaking, when you look at the investment that needs to be made,” he said, referring to the RG-6042 trial, which will include a total of 660 volunteers at more than 90 sites in at least 18 countries. “How wonderful that you’ve got this professional organization that’s done that part of the pipeline time and again.”

Because the field has advanced to human clinical trials (as opposed to experiments in animals), researchers will learn more than ever before about the disease and potential drugs, and they’ll be doing it faster, he said.

Roche is injecting RG-6042 into the trial volunteers through a lumbar puncture. If the drug lowers the level of huntingtin protein successfully in the right place and at the right time and produces an improvement either in the course of disease progression or certain symptoms, incentive will grow for companies to develop an oral pill. (In 2018, CHDI teamed up with PTC Therapeutics to investigate that possibility.)

The news in March that Roche would reduce the lumbar punctures from monthly to bi-monthly in the 25-month trial “is an indicator of very positive things,” and that the trial administrators are already learning from the experiment, Dr. Pacifici observed. 

With the billions of dollars spent on many unsuccessful trials for Alzheimer’s disease and other neurological disorders, companies are also turning to HD as a potential template for developing treatments for those conditions, Dr. Pacifici added.

Alternatives to huntingtin lowering

Dr. Pacifici said that he is “very happy to see the number of different, complementary programs” aiming to lower the mutant huntingtin protein.

However, he added that it “would be foolhardy to have a monolithic portfolio and say that’s the only mechanism. Because if for some reason – it’s still formally possible – that none of these therapies will actually have the beneficial effect we’re all hoping and praying for, we don’t want to start from scratch in five years and say, ‘Gosh, I wish we had some other irons in the fire.’”

Indeed, although knowledge about both the normal and mutant huntingtin proteins has increased substantially, it’s still not clear whether the mutant protein causes the disease, although experiments in mice showed that the Ionis drug relieved and even reversed symptoms.

“We still don’t [know] with unabashed certainty,” Dr. Pacifici admitted. “That may sound frustrating for people. But in science, to know – to rule something out definitively – is pretty difficult.”

However, he pointed out, different explanations are not necessarily mutually exclusive. For example, both the proteins and the RNA (which carries the message from the DNA to make the protein) could both be toxic, he said. The critical question, he noted, is how does such knowledge impact the drug-making process? Other newly discovered aspects of huntingtin biology are adding further nuance to the drug-making process, he said.

Thus, CHDI is looking at alternatives to lowering the huntingtin protein. In particular, over the past five years it has included a new focus on the genetic aspects of the disease made possible by dramatic scientific discoveries.

Modifier genes: nature delays or speeds onset

A major example involves so-called modifier genes, that is, genes other than the huntingtin gene that delay or speed HD onset. Using data from over 9,000 HD gene carriers and their family members, an international group of researchers (known as the GeM-HD Consortium) has identified 23 potential modifier genes. This type of broad-ranging study is known as GWAS, genome-wide association study. (Click here for the 2019 CHDI presentation “Genetic Modifiers” by Marcy MacDonald, Ph.D., no relation to Douglas.)

Some of the modifiers delay onset, whereas others hasten it, Dr. Pacifici explained. Next to huntingtin lowering approaches, modifier genes and related issues make up CHDI’s second major strategy for defeating HD.

Normal gene carriers normally carry ten to 25 so-called CAG repeats on their huntingtin gene – letters and words in the genetic alphabet. The disease usually occurs in people with 40 or more repeats.

Dr. Pacifici pointed to the example of people with 40 so-called CAG repeats on the huntingtin gene. The average age of onset for those with 40 repeats is about 50. However, data reveal outliers experiencing onset as early as 25 and late as 65, a 40-year difference.

“Imagine if we had a drug that could delay onset of motor symptoms by 40 years!” Dr. Pacifici exclaimed. “My gosh, that would be fantastic. Nature’s kind of done that experiment for us. It’s told us that it is possible to modulate the disease.”

The key now is for drug developers to create a drug based on what nature did, he pointed out, adding that CHDI has formed an internal group to further research modifier genes.

At the HDSA convention, Dr. Pacifici outlined some of the other crucial findings from the GWAS research. Some people’s CAG repeats are interrupted with a CAA, in effect shortening the chain of CAGs. “You actually get the disease later,” Dr. Pacifici stated.

According to Dr. Pacifici, another finding has demonstrated that somatic expansion – a further expansion of the mutation – can occur in people with the genetic defect, thus hastening symptoms. In other words, over a lifetime, the CAG repeats can actually increase, say, to 100 or more, thus causing brain cells to die. (Early in life, much higher numbers of repeats cause juvenile HD.)

(This research could possibly explain why my mother and I, both with 40 repeats, have had different experiences with HD. She probably had onset in her late 40s and died at age 68. I am 59 and, at my HD checkups earlier this year, did not shown apparent symptoms. At 59, my mother had full-blown HD. I will explore this topic in a future article.)

In his convention talk, Dr. Pacifici also reported on CHDI’s collaboration with IBM, which has produced a model of the disease with nine stages instead of the traditional four. This ongoing project will help design better clinical trials, he said.

We still need to ‘roll up our sleeves’

The complexities of HD and the fact that people will probably need different kinds of therapies depending on their age and individual characteristics underscore the likely need for a Huntington’s cocktail, that is, a combination of therapies, Dr. Pacifici observed.

I first heard the idea of a cocktail mentioned at an HDSA leadership conference in 2000, and it’s recurred frequently.

The elements of that cocktail, of course, remain to be assembled. I asked Dr. Pacifici to expand on a comment he had made in 2009: that the answer for successfully treating HD will come out of “left field.”

“Amazing events” can still occur in scientific research, he explained. However, more specifically, Dr. Pacifici referred to the fact that “99.9 percent of biomedical research” happens outside of the sphere of HD and CHDI, with reams of publications in academic journals and in patent applications.

“It’s not so much that we’re going to find the cure in there, but some critical observation may be made that says, ‘Ah, here’s something that’s a piece to the puzzle or the beginning of a new, fruitful line of investigation,’” he explained.

As the situation stands now, CHDI won’t shut down any time soon. Researchers, drug companies, academics, medical personnel, and HD families and their supporters will need to keep alive their excellent record of collaboration. If successful, the new drug RG-6042 could be just the first of many needed for HD.

Defeating HD will still “require rolling up our sleeves” and being smart, Dr. Pacifici concluded.

(You can watch my interview with Dr. Pacifici, my recording of Dr. Macdonald’s presentation, and the 2019 CHDI research highlights report, Postcard from Palm Springs, in the videos below.)

(Next time, Dr. Pacifici explores the question: are we failing to solve HD by ignoring potential “natural” remedies, other alternative therapies, and repurposed drugs?)

(Disclosure: I hold a symbolic amount of Ionis shares.)